Properties of Fluids SPH4C

Liquids and gases are both	: a fluid is any substance that	and
of its con	tainer.	
If the fluids are at rest, the study of them i	is called fluid	
If the fluids are in motion, the study of the	m is called fluid	
The science and technology of the		_ of liquids is
called		
Similarly, the science and technology of the	ne mechanical properties of	and other
gases is called		
The study of hydraulics and pneumatics in	ncludes the study of fluids that are not o	enclosed, such
as lakes and air in the atmosphere, as we	ell as	
that are enclosed:		
A hydraulic system is a mechanical syst	em that operates using a liquid under _	<u> </u>
A pneumatic system operates using a ga	as under	
What's the difference? Liquids flow and t	ake the shape of their container but ma	intain a
constant Gases	to fill the	<u></u> .
This is because the difference in what the	e are doing.	
millions of K	Fully ionized plasma. Atoms in plasma become increasingly ionized.	
tens of A	Plasma Phase Free electrons move among	

Particle Theory Revisited

1. All	_ is made up of extr	emely tiny partion	eles.	
2. Each	ha	as its	of particles, dif	ferent from
the particles of other p	ure substances.			
3. Particles are always	F	articles at a hig	her temperature are gene	erally moving
on a	verage than particle	es at a lower ten	nperature.	
4. Particles	each other.			
In a solid, the particles	are moving	enouç	gh that this attraction keep	os them in a
	·			
In a liquid, the particles	s move fast enough	that they can't s	stay in a rigid structure bu	it they still
want to	·			
In a gas, however, the	particles are moving	9	and fly by	each other,
bouncing off the edges	of the container.			
Note that there is a 4th	state of matter call	ed	which has	
that can conduct electr	ricity and be influend	ced by magnetic	; fields.	
It is similar to a	in its properti	es.		
Gases are therefore hi	ghly		_: their particles can be fo	orced back
closer together.				
This means that their _		their		_, is variable.
Density has units of				

 $\underline{\text{Example}}$: A quantity of helium gas at 0°C with a volume of 4.00 m3 has a mass of 0.712 kg at standard atmospheric pressure. Determine the density of this sample of helium gas.

More Practice

1.	Match each of the	e following terms on the left to its definition on the right.		
	compressibility	A. a substance that can flow and take the shape of its container		
	density	B. a fluid that maintains a constant volume		
	fluid	C. a fluid that expands to fill the available volume		
	gas	D. the study of the mechanical properties of gases		
	_ hydraulics	E. the study of the mechanical properties of liquids		
	liquid	F. the mass per unit volume of a substance		
	pneumatics	G. the property of being able to occupy less volume		
2.	$\mbox{H}_2\mbox{O}$ can be observed as ice, water, and water vapour. Which of these could be classed as a fluid?			
3.	Can iron ever be classed as a fluid? Explain.			
4.		s 0.50 m long, 0.20 m wide, and 0.15 m high. Its mass is 128 kg.		
	(a) What is the vo	olume of the block?		
	(b) What is the de	ensity of the block?		
	(c) What is the ide	entity of the metal? (You will need to look this up.)		